
. .

ARMY RESEARCH LABORATORY

Natural Computing: Its Impact
on Software Development

Approved for public release; distribution unlimited.

20000310 090

The findings in this report are not to be construed as an
official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer’s or trade names does not
constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not
return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-2040 February 2000

Natural Computing: Its Impact
on Software Development

Som Karamchetty
Information Science and Technology Directorate

-Approved for public release; distribution unlimited.
_

Abstract

Many software engineering problems stem, in part, from the need for
software designers to understand specialized knowledge domains. Current

computer software systems are not capable of representing familiar
calculation features such as equations, tables, graphs, procedures, and
pictures so that these features assist humans to perform calculations in a
natural, intuitive way. This report explains the need for these features to
present users with “natural” ways of doing calculations-that is, ways
analogous to the paper-based techniques used in the absence of computers.
Features presented in this way would make computing more transparent and
intuitive. In the Nutz~ul Conzputilzg approach proposed in this report, software
tools are first developed and then given to domain specialists to use in their

calculation methods, knowledge, and data. As domain knowledge changes
and grows, and/or new calculation methods are needed, software developers

can add new methods and procedures to the existing methods (or delete old
ones) and develop successively enhanced versions of application software for
use by both specialists and naive end users. Domain information and
knowledge can be captured in electronic books and communicated
electronically for further expeditious use. Natural Computing eases
application system development and accelerates domain knowledge
dissemination, leading to quicker development of further knowledge.

ii

Contents

1.

2.

3.

4.

5.

6.

7.

8.

9.

Introduction ... 1

Natural Computing Features ... 2

A Textbook Example of Natural Computing Features .. 3

Problems With Traditional Software Development .. 7

4.1 Development of Tools Versus Development of Domain Knowledge.. .. 7

4.2 Generic Software .. 8

4.3 Ends alld Means .. 9

Information Representations and Domains ... 11

Ideal Characteristics of Software Tools ... 18

Evolution of Computing .. .19

State of the Art of Tables in Software .. 20

8.2 Tables in Database Sysfems ... 20

8.2 Tables in Text-Processing Tools ... 21

8.3 Table Usage in Real World .. 22

An Analysis of Tables .. .23

9.1 Anatomy and Morphology .. 23

9.1.1 Table Parfs .. 23

9.1.2 Capturing Meanings Expressed in Tables ... 27

9.2 Operations ... 28

9.3 Representation of Structure ... 30

9.4 Development, Choice, and Use .. 31

9.5 Search for Data .. 32

9.6 Visibility of Data .. 33

9.7 Table Data Storage ... 33

9.8 Display ... 33

9.9 Tesfiq a Table in Isolation .. 33

9.10 Growth of a System .. 34

10. Graphs ... 35

10.1 Sfafe of Art ilz Graph Represenfafion.. .. 3.5

20.2 Natural Conzpufiq Graph Represenfatioll ... 36

11. Equations .. 39

12. Procedures .. 40

13. Pictures .. 41

14. Text ... 42

15. Conclusions .. 43

Acknowledgments .. 44

References .. 45

Distribution ... 47

Report Documentation Page .. 49

...
111

Figures

1. A sample page containing text, sketch, and equations ... 4

2. A sample page containing text, graph, and equations .. 5

3. A sample page containing text, table, and equations .. 6
4. A three-dimensional plot by Mathematical: ... 9
5. Ideal gas equation with notation .. .11
6. Graphic representation of temperature-volume-pressure relationship for an ideal I ,.

gas ... IL

7. A C++ program for ideal gas equation .. 13

8. A map of a city provides navigational information to a traveler .. 13
9. Algorithmic description of a route ... 13

10. Status of American and National leagues ... 15

11. Simple steam power plant schematic and temperature-entropy diagram.. 15

12. Properties of steam represented on a Mollier chart ... 17

13. Chronological sequence in ideal Natural Computing ... 18

14. Chronological sequence in current standards .. 18

15. Parts of a table ... 24

16. Anatomy of a simple table .. 25

17. Table column header object ... 25

18. Table data body object .. 26

19. A table example wherein cells in a column contain ranges of numbers.. 28
20. A spectrum of generable table types in profile representation .. 29
21. Cell-cage array connects cell locations and contents ... 31

22. Adjacency property is used to get table values .. 32
23. Example graph showing how a graphical relationship provides visibility to data and

information .. 36

24. An example showing interactive use of an equation .. 39

25. A Natural Computing procedure example ... 40

26. Dimensions from a sketch used in an equation ... 41

27. Natural computing text with procedure ... 42

Tables

1. Tabular representation of temperature-volume-pressure relationship for an ideal

gas .. 11

2. Performance status of Yankees on a particular day ... 14

3. A table in a word processor showing an element spanning two columns.. 22
4. Sales in East Region .. 29
5. Sales in West Region ... 29
6. Result table: sales in both regions .. 29

iv

1. Introduction

High life-cycle costs and poor quality are the main problems with current
software development. Several methods and practices have been pro-
posed to address these problems, with limited success. One of the more
successful approaches is to develop generic tools, such as those for word
processing, drawing, and databases; these have resulted in the economi-
cal development of software. These tools have become very affordable
and are of good quality. In many technical scientific domains, however, in
which computers are used to conzpute in the earliest sense of the word-to
make calculations-software development is still complex, slow, unreli-
able, incomplete, and very expensive. The result is that software for literal
computing is often the least satisfactory type of computer software. In
large part, this anomaly arises because software developers and domain
specialists are usually different groups.

The approach I propose in this report, called Natural Conzptlfing, is in-
tended to avoid this problem by providing domain specialists with
software tools whose use and function are transparent and intuitive. In
the term Nafuuol Computing, the word conzpufilzs is thus used in its basic
sense, rather than the extended one that has arisen with the development
of modern digital computers and particularly personal computers. The
word natural is used to refer to the kind of understanding of paper-based
means of computing that practitioners of technical subjects call on to read
and work with technical documents. It could be argued that these tech-
niques are hardly natural, since they have been developed over centuries
(and individual people must learn them as part of their education and
technical apprenticeship); however, I argue that they are natural in the
same sense that many learned behaviors (such as riding a bicycle) can
seem natural to a human being. It is nafwal in the same sense that com-
puter scientists use in referring to the specialized field of natural language.

2. Natural Computing Features

Since Natural Computing is based on the way people actually compute
using paper-based techniques, the first question to be addressed is “How
do people compute-using available information of all types?” Before the
invention of computers, most knowledge was captured in the form of
books and other paper documents. Books can be further classified as
textbooks, reference books, handbooks, and journals, based on the tempo-
ral nature of the information. Other documents are flyers, brochures, and
receipts, which have a highly transient nature. (I use books and documents
interchangeably to refer to paper-based information.) Information was
printed on paper for storage, retrieval, and communication. The paper-
based information was read by the end user. By reading the information
from one or more documents and by combining it with one’s own intu-
ition, invention, and discovery, one generated new information and wrote
(printed) it in the form of another paper document.

When we dealt with technical matter, domain knowledge was captured in
the form of text that contained equations, tables, graphs,* and pictures.+
Without pictures, descriptions of scenes were elaborate (a lot of text). The
famous saying “a picture is worth a thousand words” sums it up. Again,
in technical subjects, the pictures could be sketches, schematics, drawings,
paintings, or photographs. Sketches stood for descriptions of parts and
components, such as shapes and sizes. Schematics and other diagrams
showed the mutual relationships of components in a system and the state
of the system and its temporal nature.

Tables captured relationships among sets of variables. Graphs also repre-
sented relationships among variables but additionally provided a highly
visual insight into the mutual dependency of the variables.

Domain specialists read the text and concurrently used tables, graphs,
and charts. They used a note pad to make temporary notes and calcula-
tions, Simple calculations were done mentally. More complicated calcula-
tions required aids, such as log tables and slide rules. Domain specialists
captured new ideas and information in the form of more equations,
tables, graphs, and pictures; appended them to text; and communicated
the new documents to others in the field. Documents were subject to three
principal types of use: (1) reading and comprehension; (2) interactive
calculations using the tables, equations, graphs, and pictures along with
the text; and (3) development and recording of new functions (tables,
equations, graphs, and pictures). Capturing these essential natural forms
and processes in a computer software system is the goal of Natural
Computing.

*The term gra~/z is used in literature with various meanings. In this paper, a graph means a curve or a set
of curves on a graph paper. Gruplzs as in graph theory and graphics as in pictures are not the meanings
implied.

+The term yictrwc is used in this paper to include sketches, schematic diagrams, and drawings. It does not
include photographs and painted pictures.

2

3. A Textbook Example of Natural Computing Features

An example of paper-based computation tools from a textbook illustrates
the features proposed for Natural Computing. Figure 1 shows a sample
page from an engineering textbook describing mechanical springs. The
page consists of a sketch of a mechanical spring, text, and equations.
Figure 2 shows another sample page, with a graph, more equations, and
more text. By reading the explanations on these pages, an engineer will
understand the domain of mechanical springs. An engineer can study the
graph on the page and understand the trends. At any time, the engineer
can obtain values given by the graphs-this is usually called reading a
graph. While using these pages, the engineer starts with values of D and
d, proceeds to calculate the value of the variable C from equation 8-1 (a
reference number in the sample page (fig. l)), and reads the value of the
Wahl correction factor K from the graph of spring index versus stress
correction factor. This value of K and an input value of F (force) are next
substituted into equation 8-4 and the value of stress r is calculated (fig. 2).
The engineer may next proceed to the sample page shown in figure 3, and
read the values of A and nz for a given material. The engineer can substi-
tute these values into equation S-10 to calculate the ultimate strength in
tension of the spring material.

This description shows that domain specialists present information in
textbooks for use by others in performing calculations. Thus, textbooks
are used both to explain the subject and to provide information in the
form of text, sketches, equations, graphs, and tables for ready use in
calculations. In the following sections, I describe how traditional comput-
ing (using computer software) failed to follow the natural calculations
paradigm and is accordingly beset by problems.

3

as LI mewxe of cnil curvature, With thk rtla ttcrn, Eq. I.&j cat-~ bz arrugd co girt

Source: Joseph E. Shigley (1977). Meclmical Engilzeerilzg Desip, 3rd ed., McGraw-Hill Book Co.,
New York, NY.

Figure 1. A sample page containing text, sketch, and equations.

4

Source: Joseph E. Shigley (1977). Mechnnical Efzgilzeerilzg Desi~~z, 3rd ed., McGraw-Hill Book Co.,
New York, NY.

Figure 2. A sample page containing text, graph, and equations.

Source: Joseph E. Shigley (1977). Mcclmzical Engineering Desip, 3rd ed., McGraw-Hill Book Co.,
New York, NY.

Figure 3. A sample page containing text, table, and equations.

6

4. Problems

.

.

.

.

.

.

4.3

With Traditional Software Development

While discussing the problems plaguing the software industry, Coad and
Yourdon (1991) state, “systems analysts must first understand the prob-
lem domain at hand.” They also answer the questions “What is so diffi-
cult about analysis? And what is the challenge?” by identifying four
major difficulties faced by systems analysts on all types of projects:
problem domain understanding, person-to-person communication,
continual change, and reuse:

U~zdeusta~zcli~zg. Scientists devote their lifetimes to understanding their
specific domains and to enriching them by discovering new knowledge.
No wonder software systems analysts find it impossible to “understand”
the domain.

Cornnzunicafion. In any domain, different practitioners hold differing
viewpoints and preconceptions that make communications among them
difficult. Needless to say, communication with outsiders (such as systems
analysts) seems well-nigh impossible.

Chal7ge. As scientists work in a specific area, they hit upon new ideas
constantly-that is their goal. Therefore, it is a given that a domain will
continually change. (Modeling a domain that has ceased growing is easier
for the systems analyst, of course, but the result may not be useful.)

Reuse. Modern economies depend on the reuse of all knowledge and tools
so that the many may enjoy the fruits of the labor (and inventiveness) of
the few. Bricks and bolts and nuts are probably the best examples of
engineering designs of great reuse.

One can avoid these four types of difficulties, which are inherent in
conventional software development, by using Natural Computing. As I
conceive it in Natural Computing-

Software developers do not need to understand a whole domain: they
need only provide building blocks for the specialist to work with.

Communication between domain specialists and software developers at
the domain level of abstraction is unnecessary.

The domain will be extended by the scientist (or engineer or domain
analyst), not the software developer.

Software engineers are provided ways to program building blocks.

Development of Tools Versus Development of Domain
Knowledge

To assist a discipline, software developers do not need to grasp all the
knowledge of that discipline, but they must understand its language and
medium. Every field has developed notations, techniques, and methods
for facilitating communications among practitioners within and between
fields. Scientists and their followers constantly reuse these forms of

7

4.2

knowledge for further understanding and for applications that benefit
society. Both the methods of mathematicians and the tools and techniques
of engineers provide such benefits.

Certain disciplines, such as mathematics, enable other disciplines to
deliver goods to society All sciences depend on mathematics to some
degree to solve problems that can be formulated in mathematical termi-
nology. Mathematicians do not, however, insist on “understanding” a
science domain. Consider, for example, the application of quadratic
equations. A scientist does not explain a domain problem to a mathemati-
cian so that a quadratic equation solution can be applied. Instead, math-
ematicians have suggested and supplied a number of methods for solving
quadratic equations without regard to their particular application. In
general, mathematicians have provided scientists with a vast array of
theories and methods (such as complex variables, Laplace transforms,
Fourier transforms, and Bessel functions). Following the example of the
mathematicians, software developers and software engineers should
abstain from demanding a full understanding of the domain in which
they are developing applications. They will be able to contribute to
human progress by providing free-standing methods for use by scientists
and engineers. Software engineering professionals should develop the
tools and enable the domain specialists to incorporate the domain knowl-
edge and methods with the help of such tools. In this way, software is like
mathematics, and its usefulness to humanity can be realized only through
other domains.

As scientists discover new facts, they codify their knowledge and present
it in papers, articles, books, and handbooks. This knowledge is in the
form of text, equations, tables, graphs, procedures, and pictures. These are
the essential forms of the language of science and technology (as well as
of other domains in which calculations play a part, such as engineering,
accounting, economics, business management, and (even) political sci-
ence). Natural Computing focuses on these forms, so that software engi-
neers can develop tools that deal with computer representations of these
forms.

Generic Software

Some examples of generic software development can be cited. Word
processing, music, and graphics programs are available that are indepen-
dent of a specific domain. Because these software tools employ the users’
language and notation and emulate their familiar tools, they can be used
by a variety of practitioners. To the credit of such generic software, musi-
cians can use computers to create music, and painters can use computers
to paint. Software developers, in general, are likely to agree that it is best
to assist artists, musicians, and painters by giving them appropriate tools,
rather than trying to understand these richly complex domains. Unfortu-
nately, however, when it comes to scientific, engineering, and analysis
domains, developers attempt to understa& the domain and develop
applications programming. This is the crux of the problem in software.

4.3

Brooks (1987) argued persuasively that there are no magic solutions to the
fundamentally difficult problems associated with software development.
There are no panaceas-no miracle cures that will automatically increase
our productivity by orders of magnitude while eliminating all the soft-
ware bugs. However, by focusing on the development of generic tools,
software developers can reduce software bugs, and software develop-
ment can be moved to a higher plane.

Ends and Means

Coad and Yourdon (1991) caution software practitioners that if the appli-
cation of a software engineering method produces a monument of paper,
then something is wrong-in the method, in the application of the
method, or perhaps in both. They lament, “if we lose sight of people and
begin producing charts, diagrams, and piles of paper as ends [italics
added] unto themselves, we fail to effectively communicate.” Currently,
most software methods generate displays in the form of plots or tables
that can be used as records but not as dynamic relationships. Contrast this
with a scientist’s intuitive and interactive use of tables in books. A scien-
tist can readily use a table on paper either to read or as a relation in his or
her computing. Since computer tools are not now available that treat
tables as relationships, their reuse by other software is limited and circui-
tous-reuse depends, in fact, on the scientist’s intervention based on
understanding-just as with a paper table. In a similar manner, some
programs can generate graphs in vivid colors and multiple dimensions
and animations (see fig. 4, generated by Mathematical (Wolfram, 1991)).

Figure 4. A three- ln[4]:=
dimensional plot by
Mathematical.

Plot3D[Sin[x] Sinb], {x, 0, 2Pi}, (y, 0, 2Pi}]

9

But alas! Neither this graph nor any of the graphs on a computer screen
are meant to be used by another program.

I argue that text, equations, tables, graphs, pictures, and other forms of
output (e&s) generated by current programs should actually be r~leuns for
communication among people, understanding by people, and further
generation of knowledge by people. The greatest unmet need in software
engineering is developing methods and tools that will capture equations,
tables, graphs, procedures, and pictures as reusable software objects.
Moreover, these forms should be part and parcel of text (computer docu-
ments), just as they are in current paper-based texts. This idea is at the
heart of Natural Computing.

10

5. Information Representations and Domains

Equations, graphs, and tables are all intended to capture and represent
functional relationships among a set of variables in a given domain. In the
following paragraphs, I present examples from widely different domains
to stress the point that these three forms can represent relationships in
those domains. First, using a scientific example, I consider the relation-
ship among the temperature, pressure, and volume of a gas. In the sim-
plest case, this relationship among the state variables (temperature,
pressure, and volume) is represented by an ideal gas equation (fig. 5). The
same relationship can be represented by a table (table 1) or by a graph
(fig. 6). Any one of the three forms can be used as a means to obtain one
value of a state variable, given values of the other two.

Figure 5. Ideal gas 1 Ideal gas equation:
equation with
notation. V = R x Tip

Notation:
V = Volume, ft3
R = Gas constant, ft-IbfAbm-deg R

= 53.35 for air
T = Temperature, deg R
p = Pressure, psia

Table 1. Tabular
representation of
temperature-volume-
pressure relationship
for an ideal gas.

Table 1. Specific volume of air (ft3).

580.0

590.0

600.0

14.61781935

14.86985072 10.92934 7.286227 5.46467 4.371736

15.12188209 11.11458 7.409722 5.557292 4.445833

11

Figure 6. Graphic
representation of
temperature-volume-
pressure relationship
for an ideal gas.

v (volume, ft3)

Let us explore the genesis of the three forms for representing relation-
ships. In general, mathematical analysis of a problem results in a func-
tional relationship in the form of an equation that we can use in further
calculations. Experimentally observed data are set up in a tabular form, or
the results are plotted in the form of a graph. These three forms of repre-
sentation have strong and weak points. Books on data analysis describe
such issues in detail, which are beyond the scope of the present discus-
sion. I limit myself to a few remarks. Graphs show the highest visibility of
trends. Tables provide some sense for trends but readily reveal magni-
tudes. Equations are compact, but provide little or no sense of the trend
(except in simple cases). Barring such specific virtues, these three forms
are identical in capturing relationships between variables. In comparison
with these three forms, a black box computer program, which can also
embody the relationship among the variables, has the least visibility
when it comes to revealing the trend of a function or algorithm
(see fig. 7).

As an example of states of a system and information about the system,
consider a road map. It represents the states, which are map locations.
Roads or paths connect the locations. For an automobile to move from
location A to location B, it needs to take a certain path. A map helps in
determining which alternative path(s) will take an automobile from A to
B. A map is two-dimensional and describes a location in terms of its x and
y coordinates. If we superimpose a map of railroads on our (road) map
example, the user has more alternative paths to take from A to B. We can
provide descriptive directions to a traveler on how to go from A to B, or
we can give the traveler a map and let him or her choose a path. Giving
directions is algorithmic and brief. On the other hand, by supplying a
map, we have provided the traveler with considerable information and
insight. Now, the traveler can choose the shortest path, find a scenic
route, or replan the route if a roadblock occurs during travel. A map is
actually a complex graph. Figures 8 and 9 present examples of a map and
algorithmic directions, respectively.

12

Figure 7. A C++
program for ideal gas
equation.

main ()

{
real R, T, p, v;
tin >> R;
tin >> T, p;
v = R * T/p;
tout << v;

1

Figure 8. A map of a
city provides
navigational
information to a
traveler.

Source: AAA.

Figure 9. Algorithmic
description of a route.

From: Sacramento Met Airport
Take: 5 South
Exit to Rte 80 east
Exit to Rte 80 Bus South
Exit to Exposition Blvd
To: Cal Exposition

13

Table 2. Performance
status of Yankees on a
particular day.

Relationships connect the various states of a system, and they play a key
role in the description of a system as they describe the behavior of a
system. Consider the game of baseball. Table 2 shows the performance of
the New York Yankees on a particular day Figure 10 shows the state of
the American League and the National League on that day (The Washing-
ton Post, 1996). As each ball is played, the state of the game between two
opposing teams changes. A batter, a pitcher, and other players have
attributes, and they change with each pitch thrown. Numerous states are
recorded by official scorers and by baseball connoisseurs and aficionados.
Table 2 and the tables in figure 10 are one set of abstractions or represen-
tations of all possible and generatable states.

Groups of players belong to a team, and the states of the teams (league)
are represented in the table in figure 10. When the results of the next day’s
games are available, this table can be recalculated according to a set of
relationships. Take, for example, the following generic equation:

new status = old status + new result.

For each team,

W = W + 1 if the next game was won by this team, or

W = W if the next game was lost or postponed;

L = L + 1 if the next game played was lost by this team, or

L = L if the next game played was won or postponed;

Pet = W/(W + L); and so on.

This example illustrates that a system has many states and that a given
abstraction captures and shows selected states. States comprise sets of
variables and are connected by means of relationships.

New York AB R H BI BB SO A%
Bogs 3b 4 0 1 1 0 0 0.331
Girardi c 40 000 0 0.282
O’Neill rf 3 0 1 0 1 0 0.368
TMartinez lb 4 0 0 0 0 0 0.246
Sierra dh 3 2 3 0 1 0 0.281
Duncan 3b 40 000 0 0.343

GeWilliams If 3 0 0 1 0 0 0.333

RRivera cf 2 0 1 1 1 0 0.5

BeWilliams ph 1 0 0 0 0 1 0.278
DJeter ss 31100 0 0.275

Totals 31 3 7 3 3 1 -

14

Figure 10. Status of
American and
National leagues.

Figure 11. Simple
steam power plant
schematic and
temperature-entropy
diagram.

Finally, I present a technical example, the case of a thermal system. The
operation of a steam plant is shown in figure 11. There are four
components: a boiler, a turbine, a condenser, and a pump. The states of
the working fluid (steam) are represented on a temperature-entropy (T-s)
diagram (Van Wylen and Sonntag, 1965). At a given state, the properties
(attributes) of the steam of interest to a thermal engineer are p, T, v, s, and
h. Specific relationships apply to the components that affect a change in

Source: The Waslziqtoir Post, Monday, 27 May 1996, p C6.

-\
_ ___ ._

.

+

. . . . _ . .<

. ..m

_t

i -..
f / _ I.;.. . . -_* yi ,(-

. . :n , /
i ix’
! F_ ‘:. L --;\

. .._‘:.l:::..4.,rr !

Source: Gordon J. Van Wylen and Richard E. Sonntag (1965). Fzuzdamnztals of
Classical Tlzcmodyzanzics, John Wiley and Sons, Inc., New York, NY.

15

the state of the steam. Expressed in other words, specific paths connect
the states (l-2,2-3,3-4, and 4-l). Historically, the calculation of the states
(i.e., the values of the properties) was done by the use of steam tables and
steam charts, called Mollier diagrams (fig. 12) (Keenan et al, 1969).
Mollier charts are highly visual, and their use made the “physics” of the
steam plant process highly intuitive. However, charts are not accurate,
since they are limited by their scale. The use of steam tables improved the
accuracy of the calculations, albeit at the expense of some degree of
visibility. Since the advent of digital computers, equations were fitted (or
derived) for the behavior of steam. The equations are extremely complex,
and their solution by computer algorithms is a “black box” process.

In every domain, information is essentially captured and represented in
the form of equations, tables, and graphs. As discussed previously, tradi-
tional computer programs catered only for algorithmic information.
However, since people need both information and algorithms to under-
stand the principles involved in the domain and to perform calculations,
a scheme where both information and algorithms can simultaneously be
represented and presented has great merit and utility.

16

Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore (1969). Stem fibles:
Tlmn~odynnnric Propcrtirs of W&r hcltdiq Vnpol; Liquid, ad Solid Plzmcs, John Wiley and Sons, Inc.,
New York, NY.

Figure 12. Properties of steam represented on a Mollier chart.

17

6. Ideal Characteristics of Software Tools

Having described the features of paper-based computing that people
have evolved over time, I am ready to state some goals for Natural Com-
puting. The main goal of good software tools should be to provide a user
with facilities to read, interactively calculate (as on a scratch pad), and
develop and record new procedures and information in any calculation-
intensive domain. Once such good tools are successfully developed,
electronic information processing can be cleanly divided into three dis-
tinct parts: (1) software tool development, (2) domain setup and knowl-
edge incorporation, and (3) end use. In such a scenario, software develop-
ers create generic tools that know how to operate on text, equations,
tables, graphs, and pictures. Domain specialists set up and incorporate
data, information, and procedures, using the generic tools provided to
them by software developers. Finally, end users use the domain informa-
tion and procedures provided to them. There will be a clean and clear-cut
division between the software tool development and the domain incorpo-
ration. Figure 13 shows this ideal, in contrast with figure 14, which shows
what is currently standard. In time, as newer versions of software tools
with greater capabilities evolve, digital computing will approach what is
natural to people.

Figure 13.
Chronological
sequence in ideal
Natural Computing.

Figure 14.
Chronological
sequence in current
standards.

18

III

Domain knowledge Software system
communicated -++ developed

by by
domain specialists software developers

7. Evolution of Computing

Having proposed an ideal set of characteristics for computing, I now
present a quick survey of the state of the art. Approaches to computer-
based calculations have continuously evolved. During the fifties and
sixties, computers were seen as productivity machines. The nature of
software tools or languages was such that domain specialists could use
software tools to speed up their calculations and also to apply them to
more complex problems. It was found to be more effective to train scien-
tists and engineers in FORTRAN programming than to train software
developers in science. Similarly, finance and accounting specialists
adopted COBOL programming. Note that software developers did not
need to “understand” the domain, because the domain specialists knew
the programming languages. By the seventies, however, as larger com-
puter systems became available, these approaches by themselves were not
adequate. Rather than providing appropriately more natural FORTRAN
and COBOL, software developers became donrailz software developers.
The common term for them is “application developers.”

Till recently, text, graphs, equations, and pictures did not coexist in
computer documents. The eighties saw the development of desktop
publishing systems that helped us create excellent documents that in-
cluded all these various forms. Even so, these objects are generated as
elzcls and not as meulzs for further continual computing. That is, they are
representations of information (just like traditional paper documents), but
they are not tools for digital computing.

In the eighties, a number of generic tools emerged that permitted scien-
tists and others to work in symbolic mathematics: Macsyma, SMP, Re-
duce, MathCAD, TK!Solver, and Mathematical. The popularity and
widespread use of such tools demonstrate that domain specialists want
better and more natural tools and not the personal services of “applica-
tion” developers.

Graphics programming tools have shown that points, lines, surfaces, and
so forth, are the language features of a variety of graphics domains,
whether for building plans, plumbing, machine designs, or integrated
circuits. The graphics programming area has taken giant steps in develop-
ing natural software tools that graphic artists can use. Such examples
should similarly guide us in recognizing the basic features that are ge-
neric to calculations, especially while one is using graphs and pictures.

If we follow this trend into software for calculations, operations on tables,
equations, and graphs can be generic or domain-independent. The first
step to progress in this area is to represent computing features (tables,
graphs, equations, etc) as objects, through object-oriented programming.
The next step is to use those features in a variety of domains.

19

8. State of the Art of Tables in Software

Since I am arguing for an appropriate representation for tables, graphs,
equations, and other objects, I first examine the state of the art in comput-
ing with respect to these objects, beginning with tables. Tables are now
used mainly in two principal areas: database systems and text processing.

8.1 Tables in Database Systems

Date (1995, p 79) calls a table a relation, and then (p 80) states, “a relation
and a table are not really the same thing, although in practice it is fre-
quently convenient to pretend that they are.” The vast literature on
database systems might lead an unwary reader to conclude that the
database community has already represented tables in a
computer-usable format. However, database relations do not allow
people to use the most corm-non tables that they know. This situation is
due to the mathematical rigor of the database systems. Software develop-
ers are caught in a dilemma between mathematical rigor and the natural
but highly flexible forms people use. For example, study the baseball
tables in figure 10 and table 2. Six-year-old children grasp the nuances of
these tables. These simple-looking tables represent many relationships.
Lay readers can quickly compare and calculate desired outcomes. As new
baseball games are played each day, new tables of values can be calcu-
lated from new data, old table values, and predefined relationships
(formulas). Databases are not meant to be used that way.

Shaler et al (1988) discuss formalizing the concept of a table, including
normalization rules for producing well-formed tables. According to
Shaler et al, the normalization rules can be viewed from two perspectives.
The first focuses on the form of data in databases; these rules tell how to
set up tables so that there is little redundancy in the data-that is, the
amount of data required to store a certain information content is mini-
mized. The second perspective (the one most natural to us) looks at the
normalization rules as statements about the repertoire of forms that we
use in our model (the fact that we are using tables, for example), and the
meaning we imply whenever we use a form in a particular manner.

Date (1995) describes a database system as basically a computerized
“record-keeping” system. Its overall purpose is to maintain information
and to make that information available on demand. Date considers three
classes of users: the application programmers, the end users, and the
database administrators. Date also gives a slightly more precise definition
of the database: “A database consists of some collection of persistent data
that is used by application systems of some given enterprise.”

While defining what a relational system is, Date states that in the rela-
tional system, the user perceives the data as tables (and nothing but
tables) (p 22). He goes on to state, “For most practical purposes, indeed,
the terms relation and table can be taken to be synonymous.” The rela-
tional model is a way of looking at data-that is, it is a prescription for a
way of representing data (namely, by means of tables).

20

A scrutiny of table 2 and the tables in figure 10 will reveal the simple-
appearing means used by natural tables to represent a variety of complex
relationships; by contrast, the best database systems are much more
limited. For example, in natural tables, ranges are represented, blanks are
allowed with definite meanings, and data types are mixed with no prob-
lems. In the first column of table 2, notice how a batter and information
on his field position are combined! A database system will not allow such
mixing.

Despite the extensive use and discussion of “tables” in database systems,
these entities are much more limited than real-world tables and do not
provide a way to capture the complex relationships that nnturul tables
embody.

8.2 Tables in Text-Processing Tools

As suggested earlier, tables in word processors and publishing tools are
displays only; the meaning relationships among the elements are sup-
plied by the reader and are not inherent in the tables themselves. Discus-
sions of tables in text processing accordingly focus on their display
features.

Morris (1996, p 79) describes how tables are formatted and added as a
new feature of Hypertext Mark-Up Language (HTML) so that HTML can
become a true publishing medium. As is common with HTML docu-
ments, tags are used to define a table and its components. A table is
divided into rows and cells. Techniques are defined to format text in table
cells. However, these formatting rules are merely to represent tables for
display. Creation and editing are permitted, but no other data manipula-
tion and use are possible at present.

Lemay (1996, pp 194,440) discusses formatting of tables for use on the
World Wide Web, and again the emphasis is on creating tables at the
transmitter’s terminal (or server) and their display at the receivers’
(client) terminals. To add tables to your web page, Netscape features table
heading cells and table data cells. Lemay also suggests the use of lists,
images, and preformatted text as alternatives to tables.

In its “Autoformat” feature, Microsoft Word (version 7.0,1995) accommo-
dates 38 different formats for a table. It also allows for columns to be split
(table 3). However, the purpose of these operations is display in a natural-
looking fashion. But no methods exist that support the placement, re-
trieval, or manipulation of data.

As this brief discussion shows, although modern text-processing tools
provide more or less sophisticated methods for creating tables as dis-
plays, they provide no tools for capturing the relationships represented
by tables. Just like paper tables, these (text processing) tables rely on a
human interpreter to supply meaning.

21

Table 3. A table in a
word processor
showing an element
spanning two
columns.

8.3

Monday Tuesday Wednesday Thursday
AM PM

- - - - -

- - - - -
- - - - -

Table Usage in Real World

In the examples of tables given in section 5, I chose the baseball tables to
illustrate the ubiquity of tables in the real world. A four- to six-year-old
(in U.S.) understands a baseball table. A child of four understands a table
of menus and prices at a fast-food restaurant. With only a basic knowl-
edge, the child can easily process this table. Humans gain such processing
knowledge independent of the domain. It appears that, initially, they
apply the processing knowledge to simple cases in their favorite domains
and later extend it to complex domains. As people grow, they compre-
hend more complex table constructions. With a little help, or through
exploration, they understand tables of increasing complexity. And they
continually add more complex tables to their repertoire. That is the nature
of our learning!

A teenage student may have problems with school homework but under-
stands tables comparing automobiles in the April issue of Consunzer
Reports. These tables do not even use numbers in the cells. Circles filled
with red and black colors are used, and footnotes explain what the vari-
ous colored circles mean.

On a more advanced level, the example of logarithmic tables demon-
strates that a table can be much more than the record-keeping tool of
database programming. Before the slide rule, the calculator, and the
computer led to their demise, log tables were used by scientists and
engineers as an integral part of a calculation. Each table element entry in
the body of a log table is the value of the logarithm of a given number
indicated by a combination of row and column heading. (This convention
alone is sufficient to show that a table is not merely a database.) A
complementary table contains antilogarithms. Other examples of tables
used directly to facilitate computations are tables of values of sine, cosine,
tangent, sinh, cosinh, tanh, and so forth.

Of course, those well versed in mathematics preferred to use equations
rather than resorting to tables, and still others represented the functional
relationship in a graphical form-a curve. This is an instance of the same
functional relationship among variables being represented by tables,
equations, and graphs. In other instances, such as experimental data and
empirical observations (e.g., baseball results), where equations are diffi-
cult to fit, tables of data are the only recourse.

How do we use tables? As a relation is the simple answer-or as a reposi-
tory. We use tables to obtain textual information, symbolic information,
graphic information, and finally numerical data. But most of all, we
interpret the information for subsequent and continual use. Our software
versions of tables should allow us to do the same things.

22

9. An Analysis of Tables

Having described in the previous section how tables are represented in
traditional databases and text-processing documents, I analyze in this
section some characteristics of tables as they are used in real life, describ-
ing their anatomy and morphology; I suggest that these characteristics
should be captured in software, so as to allow software operations on
tables that parallel the real-world operations that scientists and engineers
perform with paper tables.

A body of knowledge has developed about tables, their representation,
and their behavior. This knowledge is essentially empirical and unwrit-
ten. When we try to program the structure and behavior of tables in
software, it is important to understand and capture these traditional
conventions and nuances.

9.1 Anatomy and Morphology

9.1.1 Table Parts

Figure 15 shows the terminology for parts of a table used in printing by
the U.S. Government Printing Office (GPO, 1984). However, since such
terminology is not inclusive (and much of it is related strictly to the
display aspect of tables), I depart from it and use my own terms for
certain parts of a table.

A table represents some characteristics and values in a domain (such as
the standings of a baseball team). Here I start with a two-dimensional
rectangular array as a common example of a table, while not restricting
my discussion to it. As shown in figure 16, a table can be divided into the
title, the set of column labels, and the table body; further, within the body,
the first column often has special status.

The table caytiorz gives it an identity, describing the subject matter of the
table. In documents such as books, we find lists of tables that bring
together all the table titles to one location. The list of titles (including page
numbers) is called the table of contents and is used as an index into the
book.

I refer to the set of column labels as the colz4nzn Izeder, which is called in
GPO terms the “boxhead.” This part of the table describes the characteris-
tics that are represented in the columns. Table column headers (boxheads)
are usually complex data forms. For example, the elements may carry a
characteristic, an abbreviated variable or symbol standing for the charac-
teristic, and appropriate units for the characteristic-such as “Frequencyf
(Hz).” It is often not sufficient to represent a characteristic alone; for
practical utility, its units must also be included. User-friendly, practical
tables show the units for a given characteristic in the same or in an adjoin-
ing element. Figure 17 shows the anatomy of a table column header
(boxhead).

23

_---.-. _ _ - .__.
_-.----- . ‘-1 _-

. ..d+Y .-I.. “I ,’ *-

,-..a 1,. -I

.:mdh Ii.11 b&La, 1.54~ ..nC.. IT.4 I ?I

Source: U.S. GPO (1984). U.S. Gozwmzen~ Printing Ofice Style Mamd, Washington, D.C.

Figure 15. Parts of a table.

24

Figure 16. Anatomy of
a simple table. Caption * Table 7-1. Thermal properties.

Header 1

Footnote

-3
Applicable to real gases.

Figure 17. Table
column header
(boxhead) object.

0.0

1.0

Cells

O,l 0,3

1,1- 12 I,3 w ~-,~rr______l, -----

Contents +
Pressure

psia

Temperature

deg F degC

Volume

ft3

The table bok~ contains the data characterized in the column header. The
elements in each column represent values pertaining to the corresponding
column label. The elements along a row also usually form a consistent set;
that is, they relate properties of a given state.* Consequently, each element
in a table body is associated with its neighbors in a row and with its
neighbors in a column.

*In some unusual tables, the columns are merely unassociated lists. Although such tables are the minority,
they should be included in the analysis. One way to analyze such a column might be as one cell contain-
ing a list, rather than a set of cells. Natural Computing software should be able to reveal both relation-
ships and lack of relationship.

25

Figure 18. Table data
body object.

An element in a table body can be a number, text, a graphic symbol, or
any combination that makes sense to a user. Elements within a table can
represent continuous states of a field (such as the thermal properties of a
gas or the depth of a sea over a given area). Or the values in the table can
be discrete and represent values only at distinct (finite) states. In the
former, values can be interpolated, while interpolation is meaningless in
the latter.

Table data body elements (fig. 18) are usually uniform, being either
textual data or numbers. But it is not uncommon to see variations and
omissions on this uniformity of data. Table elements carry blanks, dashed
lines, a series of dots, remarks, and so forth.

The first column in many tables stands in a special relationship to the
other columns; elements in the first column often characterize in some
way the other elements in the rows. (In GPO terminology, the first col-
umn is called the “stub” column; see fig. 15.) This relationship may be
similar to that between the column header and the table body; for some
tables, the first column could act as the column header if the table were
rotated 90”. I refer to such a column as a row header, to capture the parallel
with the column header. (Although it is not at the head of the table in the
sense of being at the top (as the column header is), its elements act as the
“heads” of each row in a “command” sense.) It is also not unusual to find
labeled subdivisions in a row header (in GPO terms, “centerheads” in the
stub column). These labels correspond to spanner heads in the boxhead
(see fig. 15), and reveal another way in which column headers and row
headers can have parallel functions. In some types of tables, the first
column information may be interpreted as the independent variable on
which information in the other columns depends; for some relationships,
it may be possible to “promote” another column to the first position and
thus treat its information as independent. The various meanings that the
first column can carry will require careful analysis.

Cell cage +
0,0 0,1 02

Cell types 11 .L!lZ iii L?lE

38 3,1 32

48 491 42

100 250 200 250 300
212 239 320 360 410
5.4 4.3 3.6 3.1 2.7

A common optional feature of tables is notes. These qualification marks
(head notes or footnotes) may be carried by some table elements. Some
apply to the whole table, while others apply to specific rows, columns, or
elements. Domain specialists use these marks and footnoted explanations
to capture the vagaries of information. Users are expected to be cautious
of the notes and be sure to apply necessary checks for maximum validity
of the data and information.

9.1.2 Capturing Meanings Expressed in Tables

Real-world tables made up of the generic parts just described are used to
express a variety of relationships. Over the years, people have developed
table conventions that allow us to indicate these relationships, their
applicability, and their limits. In Natural Computing, we will require
software tools that are sufficiently rich to capture these meanings.

The steam tables alluded to earlier (sect. 5) demonstrate the generic
structure and behavior of a table. Steam has a thermodynamic state,
which is captured as a number of properties: pressure, temperature,
specific volume, internal energy, enthalpy, and entropy Given any two of
these properties, the state is completely defined. Hence, the properties of
steam or other gases can be represented by means of a two-dimensional
table. No matter which gas the table represents, the structure and behav-
ior of a table are generic from a software development perspective.

In some tables, the functional relationship holds only at the points given
in the table, whereas in others, the data can be interpolated and/or
extrapolated. Thus, Natural Computing will require the implementation
of tables with differing behavior. Whether and how interpolation is done
would be a property of the table: interpolations and extrapolations can be
along the rows, columns, or both; also, this property would define which
of several types of interpolations apply (arithmetic interpolation being the
most common).

An interesting example is presented in figure 19, where cells in a column
contain ranges of numbers (Shigley, 1977). When cells are filled with
ranges instead of single numbers, we can (in essence) avoid the need for
many if-then or switch-and-case statements in programming by the
appropriate use of such table columns. In the example table, the first row
of values can be used only if the size range is within 0.004 to 0.250 in. This
demonstrates a clever means of representing an IF statement in a table! In
some cases, as in the spring materials example shown in the figure, a
table element may prescribe an allowable range for the rest of the rela-
tionship to hold. Ordinarily, however, an allowable point value is
prescribed.

Table cells may contain the results of manipulation of other cells (e.g., the
sum of values of a number of other designated cells), as in a spreadsheet.
(Before the development of computer spreadsheets, people used such
methods with simple tables and called them “worksheets.“) In some
instances, the value obtained from the table element is modified based on
footnotes or other notes. Thus a table is not merely a lookup table; it also

27

Figure 19. A table
example wherein
cells in a column
contain ranges of
numbers.

Source: Joseph E. Shigley (1977). Mechanica Engineering Design, 3rd ed.,
McGraw-Hill Book Co., New York, NY.

informs us to Zook out for footnoted interpretations based on conditions. I
call this quality the responsibility of an object during computations. In the
Natural Computing approach to tables, it is important to ensure that a
table object behaves responsibly; that is, it must account for the footnotes,
the exceptions, and the units. The software tool developer, who develops
table classes, should endow the tables with the correct behavior (for
example, interpolation allowed or disallowed). The domain specialist,
who programs a specific calculation and information in the domain,
should select the table with the right behavior. If the table object behaves
responsibly, the naive end user will have no problems with the tables and
with the calculation capabilities of those tables.

Another aspect of a responsible table in my sense is the proper treatment
of units. In the real world, variables do not come with consistent units
across all interfaces and applications. For example, clothing manufactur-
ers buy cloth in yards, but pattern cutters use inches for their measure-
ments. We may enter a table with one set of units, while the table values
are in a different set of units. The responsible user-friendly table should
accommodate any consistent set of units.

Figure 20 shows a spectrum of tables (classes and categories). This dis-
play is called a profile representation of options (Warfield, 1994, and
Warfield and Cardenas, 1994). It shows that a table header can have three
options, a cell cage can have four options, and so on. As we pick each
option and explore the various combinations, a large number of practical
tables can be covered for representation in the Natural Computing
system.

9.2 Operations

The extraction of information from a table is one of the simplest of opera-
tions possible with a table. People perform far more sophisticated opera-
tions on or with tables. For example, two tables can be added. A simple
example is provided by tables 4 and 5.

28

Header

_ Column
header

_ Row
header

- Both

Following the object-oriented programming style, we should be able to
write

table 4 + table 5 = table 6,

and obtain the result in table 6.

The I’+” operator can be overloaded so that it adds tables in a specified
way We obtain the total sales for both regions by adding the values in the
two tables. Note that not all elements, but only the appropriate data
elements (those in the sales column) are added. This addition can be
repeated a number of times, so that we can get weekly results by adding 7
tables of daily data, or annual results by adding 12 monthly data tables.
ln a similar manner, we can define subtraction, scalar multiplication, and
scalar division operations for tables.

Cell cage

I Rectangular

I Multiples

II Collapsing
multiples

- Combination

Cell

. Numeric

I String

. Blank

I Graphic

I Composite

Interpolation

I Yes

I No

Figure 20. A spectrum of generable table types in profile representation.

Table 4. Sales in East
Region.

Table 5. Sales in West
Region.

Table 6. Result table:
sales in both regions.

Item Sales
(S)

Coffee
Donuts

250
890

Item Sales
(S)

Coffee
Donuts

220
1000

Item Sales
(S)

Notes

- Footnotes

- Cell notes

- Other notes

Coffee
Donuts

470
1890

29

9.3 Representation of Structure

What representation would give software tables the functionality of real-
world tables? Object-oriented programming techniques are the answer. A
table class category can be defined, and specific table objects can be
instances of classes from that category. Since tables come in a wide variety
and serve a variety of functions, they call for a number of classes, which
can be derived from base classes.

The table anatomy given in section 9.1.1 is a good starting point for
designing a structure for the table. A table is first divided into several
components (table title, column header, row header, table data body, and
notes). The column header, row header, and table data body consist of
several cells. These components themselves can be represented by compo-
sition classes (that is, a collection of other classes/objects) containing
several cells. The cells in turn contain numbers, text strings, graphic
symbols, and so forth. Therefore, the cells will be represented by several
distinct types of classes. In a separate report (ARL-TR-2041), I discuss
computer representations of tables in detail (Karamchetty, 2000a); here I
give only a brief description.

Traditionally, cells in a table are represented as elements of a two-
dimensional array But such a representation inherently limits the table to
a rectangular arrangement. It cannot handle tables where columns have
subcolumns and where columns (or rows) combine. We can avoid this
limitation by decoupling the table structure and the data (see fig. 21).
Table structure (both headers and data body) is captured in a cell cage.
The cells are numbered by their row and column indexes (0,O; 0,l; etc). An
array of all cell locations and pointers to data is set up as shown in figure
21. We can define mathematical properties for the cell-cage structure. That
is, the cell-cage location can be computed by means of the cell-cage array
location, the cell-cage type, and cell-cage size. The array location and cell-
cage location can yield adjacency lists that show which cells have neigh-
borly relationships. The array element also points to the contents of the
cell. This indirect pointer notation connects the cell-cage location and the
contents. The separation of both the structure and the contents of a table
is in harmony with the philosophy that operations on the table should be
generic.

Table column headers (and row headers, where applicable) describe what
the column (row) represents. Each cell of a header typically consists of a
variable (and often a symbol for that variable) and a string descriptor.

In most science .and engineering applications, symbols are used for
variables, which may be explained on first use or in a list of notation (akin
to the data dictionary in database systems). For example, in equations,
tables, and graphs, one might use p as the variable standing for pressure.
This definition would be included in the list of notation. Some books
additionally carry a list of units, with entries such as “y, psia.” But it is
common to indicate the units on the list of notation, with entries such as
“y, pressure (psia).” (Such an entry could correspond to a column header

Figure 21. Cell-cage
array connects cell Cell-cage array
locations and
contents. Array Cell contents

Pointer to No. Cell location
cell contents

0 0

1 0

2 c!zl p2

I p3 3 I

4 I p4 /s-

5 11,21 p5

I>
w
I

Cell cage 1
o,o O,l 072

190 1.1 1.2

cell.) In a Natural Computing document, the list of notation will bring
together all the variables in the document along with explanations. In
fact, each table header cell pointer should point to a unique memory
location where the variable and its notation and explanation are stored. In
some cases, different variables are used for the same quantity in separate
contexts; such situations can be handled separately.

9.4 Development, Choice, and Use

In the foregoing, I have identified a number of different types of tables.
The most frequently used tables can be selected, programmed by a soft-
ware developer, and provided in a tool box or Natural Computing envi-
ronment for use by domain specialists, who will select a table type that
best fits the needs of a particular application. Thus, an instance of a blank
table is created. In the creating/editing mode, all data and information
are entered into the table by the domain specialist, who is also responsible
for choosing and filling in the footnotes and other notes as applicable. The
table object also develops a number of behavioral characteristics for the
domain specialist to review. For example, the domain specialist records
the limit values (minimum, maximum, and singularities) of a characteris-
tic. The table object would use these limits to flag an error message if a
user tries unallowable values. This is another table feature that we want
to capture so that our software can imitate human usage of tables; in real-
world applications, domain specialists often provide such checks. Mini-
mum and maximum values of a variable prevent extrapolation outside
allowable bounds.

A table object will also have a set of input (or query) templates and
output templates. Many tables describe functional relationships among

31

9.5

Figure 22. Adjacency
property is used to
get table values.

32

quantities (variables or characteristics) identified in the cells of the col-
umn header. Given one of them (and appropriate data), the others can be
determined from the table. We can use this functional relationship in
generating query templates. The user should be able to choose the appro-
priate input template, type in a value for the independent variable,
submit it to the table object, and obtain the result in an output template.
The input template also guides the user with the limits on the variable
values. These guidance values in the templates protect a table from
invalid or out-of-range queries. A table with input and output templates
can be likened to a computer hardware component with its input and
output sockets and pins. These input and output templates are very
useful in connecting different functional objects into a procedure (proce-
dures are described in sect. 12).

Search for Data

Since the cells in a table can be connected by adjacency lists and pointers
to neighbors, and pointers lead to data values or contents, searching
a table for result data items is very simple. A query consists of an
independent-variable/value pair and a dependent variable. We wish to
find the value corresponding to the dependent variable. We use the
simple property of a table that two value cells bear the same neighborly
or adjacency relationship as the corresponding two variable cells do. This
relationship is depicted in figure 22.

Pressure Temperature
psia deg F

Volume
ft3

1 I I

239 I 4.3

200 320 3.6

250 360 3.1 I I

300 410 2.7

has 2nd East neighbor

9.6 Visibility of Data

Educators criticize current software systems as black boxes: because the
solution method is opaque to the user, the user learns nothing from the
software. Even domain specialists do not understand what is in the code
once their domain information is coded by a software developer. With
traditional media (paper, calculator, and pencil), students continue to
learn as they solve a number of problems. With traditional computer
software, a student’s learning has no correlation with the number of
problems solved. In contrast, because tables in Natural Computing reveal
themselves and show relationships between variables, a student can
realize opportunities available and watch out for pitfalls in the problem
domain represented by each table.

9.7 Table Data Storage

In Natural Computing, data in table components are stored in tagged or
named and connected arrays. A domain specialist would choose the type
of table needed for a specific application. Generic table structures and
methods would be automatically available for the application. The spe-
cialist would also specify the size of the table.

9.8 Display

As pointed out in section 8, current software systems have addressed the
display of tables extensively. Display is an important aspect of Natural
Computing, since domain specialists and users interact with displayed
tables. Again, display functions and methods are developed for generic
tables. The end users are given greater flexibility to choose the displays
that most suit their needs and comfort level. Natural Computing should
follow the display practices that are commonly found in books and
currently popular software, since these represent the most natural way for
users to use and understand tables. However, three types of displays are
needed: (1) for tables embedded in text, (2) for activated tables for interac-
tive calculations, and (3) for tables 40

to create procedures.

9.9 Testing a Table in Isolation

Testing is a key task in software development. Capturing an application
domain in software is equally critical. By isolating a table and testing it
for a variety of inputs, together with the built-in justifications, limits,
behaviors, and responsibilities prescribed for a table class, a Natural
Computing programmer can go a long way toward eliminating bugs in
software that uses tables. Since the filters on the table will allow only
preapproved types and ranges of values, isolated testing can come very
near guaranteeing the software and the domain information.

33

9.10 Growth of a System

Two types of system growth can be anticipated. The first is domain
growth. A given domain will incorporate more complex problems, and
other complex problems will cover a wide variety of domains. As domain
coverage grows, tables will need to be represented with more complex
features. As new table features (either structure or behavior) are encoun-
tered (or invented), software developers will play a primary role in
developing those extended features. This second kind of growth will
result in new software tools and environments or new versions of
software.

34

10. Graphs

In section 9, I focused on describing table objects to demonstrate the
importance of using natural objects, as well as showing methods to
implement them. However, in addition to tables, Natural Computing
consists of graphs, equations, and diagrams. The philosophy for repre-
senting these objects is similar to that used for table objects. In this sec-
tion, I briefly describe the representation of graph objects.

10.1 State of Art in Graph Representation

The last decade of computer development has seen an explosion of
graphics-based programming. .Currently, powerful picture and image
presentation and processing software systems are commercially available.
Many programs generate and output excellent graphs, curves, or charts.
Figure 4 is an example of an excellent-looking and complex graph gener-
ated by Mathematical for a user to see but to do no other computation.

This class of programs generates graphs as elzds (in the words of Coad
and Yourdon, 1991) in themselves. Currently, no programs exist that use
graphs as the nleons for calculations. In paper-based calculations, users
use graphs to observe trends and discern the behavior of variables. Most
notably, they use graphs to obtain resultant values. Using graphs in
calculation helps people understand the “physics” of a problem. Take the
example of the pipe friction coefficient graph in figure 23 (Karassik, 1976).
With sophisticated equation-fitting programs, it is possible to develop a
highly complex set of equations to replace this graph. But in the process,
the intuition into the problem is completely lost. A hydraulics specialist
and an end user will notice three distinct regions from this graph. The
first one is the laminar flow region, where the friction coefficient is a
function of Reynolds’ number and is not a function of surface roughness.
Then there is a transition region where the pipe friction is not well de-
fined. The third region is the turbulence region, where the pipe friction is
strongly influenced by surface roughness. For each pipe roughness value,
the curves generally tend to become flat after a certain Reynolds’ number
value. No equation can represent the functional relationship depicted by
the graph in figure 23 and be intuitive enough that a domain specialist or
user can notice that he or she is operating in a distinct region of behavior
of the fluid (Streeter, 1971). On the other hand, the graph teaches or
reminds the user that two distinctly different variables influence the
results in the regions. The visibility of the underlying processes in com-
puting is the most important reason to discard black-box programming
and use visible and intuitive programming methods. Natural Computing
graphs are essential to maintaining this visibility and intuitive usefulness.

Many of the points made in section 9 about tables also apply to graphs
and other Natural Computing objects. In this section, I briefly describe
some of the features specific to graphs.

“Such as Theorist and TableCurve (described in Douglas A. Smith and James I? Adams, Scientfic Comput-
ing am/ htomation, July 1993, 27-28).

35

I ‘. .! ., . . ‘.‘Lk. _..I_

,..r .,‘... : \T..

sy<D ; 1;::

. a: I .-.:..

<.r::*‘.% .‘i -:f.‘. :I, 3 I h?.; A. .-:.w,
:.:...:..I: :.-‘;- “3% C.~~,

Lh-s.w ,I “b..

1 I:.... ,. .h ..I.,.. . .I.\

13yI.. ;.. : . . I, I..., I I . I ..I,

Source: Igor J. Karassik, William C. Krutzsch, Warren H. Fraser, and Joseph I? Messina, eds. (1976).
PZUV~ Hajz&ook, McGraw-Hill Book Co., New York, NY.

Figure 23. Example graph showing how a graphical relationship provides visibility to data and
information.

10.2 Natural Computing Graph Representation

One represents a graph object by declaring, defining, and implementing a
graph class. For computer internal storage purposes, graphs can be
represented either by a table of x and y coordinates or by an equation. In
the former case, a graph class will have a two-dimensional array of data
members containing the x and y coordinates. The number of sets of points
depends on the complexity of the graph and the desired accuracy. If there
is more than one line or curve in the graph, a multidimensional array can
be used and a parameter value is associated with each line or curve.
Consequently, a graph class, in turn, will use an equation object as a
member or a table object as a member to represent the data for the graph.

Graphs also have captions. The captions are listed in a table of contents to
indicate all graphs available in a document. The other salient members of
a graph class are the x and y axes, labels for x and y axes, and other notes.

36

Like tables, some graphs can be interpolated along a curve, among a set
of curves, or both, while some other graphs cannot be interpolated. This
interpolation characteristic is an attribute of a graph class. The informa-
tion needed to display a graph (picture size, grid lines, line styles, and so
forth) is captured as part of the display data members of a graph. It is
interesting to note two points: (1) the display-related information is not
needed for calculations of results using graphs, and (2) calculations are
essentially done as if the data were in a table or an equation. Graphs
should carry a cursor whose shape can be changed at the user’s discre-
tion. A full-size crosshair could be moved along the graph that highlights
the point on the graph that is being examined. In place of, or besides a
cursor, a property window could be displayed, indicating numerical
values at the point of examination. As a user scans a graph, the cursor or
crosshairs should move over the graph, and the property window dis-
plays the numerical values of the variables at the point on the graph.

On hard copies, the accuracy obtainable from graphs is limited by the
paper size. On the computer, zooming in allows the accuracy of graphs to
be improved, if detailed data are available. However, the use of a prop-
erty window can give us highly accurate results up to several significant
digits, perhaps making zooming unnecessary. (Excessive zooming could
actually lead to a temporary loss of the visibility of the overall trend of
results.)

Graphs would carry input and output boxes so that the user can type in
input values and see the results from the graph in the output box. Both
types of boxes would carry names of the variables and their units. Graphs
too would have filters and justifiers to check the consistency of data and
units. Graphs would also have lower and upper bounds, as well as
singularities in between. With these facilities, graphs could be seen,
interactively used, and connected into procedures. In many ways, graph
objects will have characteristic behaviors similar to those of tables (graphs
are the subject of a separate report (Karamchetty, 2000b)).

The example of steam tables is again applicable. Historically, steam
engineers used the Mollier chart, which represented the properties of
steam graphically. One could quickly perform or do steam power plant
calculations by laying out the thermal processes on the Mollier chart. One
could visually represent the complete steam cycle by marking the various
state points on the chart.

The old paper Mollier charts suffered from inaccuracies. Replacing them
with Natural Computing graphs in electronic media and using property
windows could improve accuracy while retaining their visual benefits.
Steam cycles could be laid out on these charts with great speed. A Mollier
chart represents the properties of liquid water, water and steam mixture,
and superheated steam. Various temperature, pressure, steam quality
(dryness), and specific volume contours are drawn on the chart. A line is
also shown that presents the states that separate the liquid and mixture
states on the one side and the vapor and mixture states on the other. The
contours are completely interpolatable for all properties.

37

Steam engineers find the chart highly useful in ensuring that various
dryness qualities are adhered to in designing equipment. Although
computer programs are now available to calculate steam cycles, none of
them can match the visibility and simplicity of a Mollier chart. With
Natural Computing, one can restore the visibility while maintaining the
accuracy and speed of the computing methods. Additionally, one can lay
problems out on the chart on the fly, while preserving the speed, accuracy,
and efficiency of computer calculations.

11. Equations

Figure 24. An
example showing
interactive use of an
equation.

Equations are the last of the three functional representations. I do not
propose to describe this feature in any great detail, as a number of current
software systems allow equations to be typed in and used as functional
relationships. But the use of equations along with graphs and tables in
Natural Computing is very powerful. Moreover, the representation and
use of equations follow the philosophy and methods described in the
foregoing sections.

Equations are developed as a category of classes. An equation class
consists of member data representing the operators and operands in a
given sequence. Their relationship is captured in the form of a tree
structure.

A noteworthy feature of equation classes in Natural Computing is that
they have a justifier function that protects an equation object from mixing
quantities of dissimilar units. For example, the units justifier evaluates the
units of each expression and flags inconsistencies in the units. For ex-
ample, the units of all operands of the operators =, +, and - should be the
same.

Like tables and graphs, equation classes also carry input and output
boxes so that the user can type in input values and see the results from
the graph in the output box. Both types of boxes carry the names of the
variables and their units. Equations are identified by an equation number
and caption. These equation numbers and captions can be grouped into a
list of equation captions for indexing. (Although the use of equation
captions is not common in printed media, they would clearly be useful
for portable electronic documents.) Figure 24 shows an example of an
equation with input and output templates for inserting inputs and obtain-
ing result values.

a Input
x=2

Y = III s + c output E Y=7

39

12. Procedures

Figure 25. A Natural
Computing procedure
example.

In paper-based calculations, people develop procedures by combining
several objects (tables, graphs, and equations). The output of one object is
used as input to another object, and so on in some sequence. People use
each of the objects, note intermediate results on a scratch pad, carry them
into the next object, and so on.

In a predefined procedure, this chaining is done at the variable level. To
facilitate this process, in Natural Computing, I define a new object called
a pipe. In its simplest form, a pipe has a donor and a donee (a recipient). A
donor is a variable that provides its value to the pipe. The pipe carries
that value to the donee, which is a variable in another (downstream)
object. In more complex pipes, a pipe can have several pairs of donors
and donees.

One can set up procedures by chaining several equations, tables, graphs,
and other procedures to compute a complex calculation repeatedly In
that sense, a procedure is like a computer program. But a procedure still
retains a high level of visibility, since the user can open up a procedure
and inspect its component objects.

A large procedure can be built from a number of small procedures. By
testing and verifying each procedure in isolation, one can assure high
quality for the composite procedure. A domain specialist can reuse and
rearrange the components of a procedure and develop a new procedure.
Figure 25 shows a procedure that consists of several graphs and tables
connected. This procedure can be inserted into a program as step k. When
a procedure is opened up, the details of it become visible.

II H -I

40

13. Pictures

Figure 26. (a)
Dimensions from
(a) a sketch used in
(b) an equation.

Paper-based computing uses sketches, drawings, and schematics to show
the relative positions of variables and properties. For example, a sketch or
a drawing may show a number of dimensions of a component or an
assembly. Some of the dimensions are used in equations, tables, and
graphs. One can set up a procedure in which the dimension placed on a
sketch or a drawing can be piped into a procedure and made part of that
procedure. Or in reverse, a calculation can generate a size, which can be
piped into a drawing. Figure 26 shows a sketch from which values of
variables can be connected to an equation.

Schematic diagrams are extensively used in engineering. A schematic
diagram shows how various components are connected and how a
flowing fluid, for example, changes its state. Figure 11 showed a sche-
matic diagram of a thermal power plant. Water or steam flows through
pipes and components, and during the course of its flow, steam changes
its state. There are equations, tables, and/or graphs that relate various
properties of these states. Schematics add another dimension to the
visibility and understanding of a problem.

(b)

\
Notation

D = <oil diameter, inches
d = wire diameter, inches
C = constant, no units

14. Text

Natural Computing calculation features are embedded in text as in a
document or book. Text along with tables, graphs, and equations is
displayed for a reader to peruse. Two other modes are available: use
within a document, or reuse in other documents. Any time the end user
wishes to do a simple calculation using any of these objects embedded in
text, that object can be activated. Appropriate inputs into the objects will
produce resultant values. After using those objects, the end user can
revert to reading the text by closing those objects. This is the within-
document mode. In the reuse mode, an end user can develop new proce-
dures by copying objects from documents and connecting them. These
procedures can be saved for future use. Figure 27 shows a procedure
embedded in text.

r
File: Helical SpringsNCS 1 ACTION ,, FEATURES ENI-

Text Undo

Tables cut
Stresses in Helical Springs

Program use Equations copy

spring loaded by the axial force F.

the mean spnng diameter and

portion replaced by the internal forces. Then. the cut

portion would exert a dwect shear force F and a
torsion Jon the remanng part
superposition. the maximum sir

computed using the equation

max =py- + A

Replacing the terms by

J= FD/Z. q
r=dlZ.
J=nd4132,and

A=nd2/4

gives

5=BFD+ 4F

PO3 Ed2

In this equation, the subscript

shear stress has been omitte
unnecessary. The positwe slg
retained. and hence Eq. (b) gi
the irwde fiber of the spring.
Now define spring Index

C=$

cl as a measure of the coil curv
Eq. (b) can be arranged to g~v

Figure 27. Natural computing text with procedure.

15. Conclusions

Traditional programming or software development focused on making it
easy for a software developer while he or she tried to understand a
domain and worked in it. Database systems aimed at achieving math-
ematical correctness and elegance (Date, 1995) versus emulating real-
world tables. Software systems, such as word processors and computer-
aided drafting systems, have broken that tradition and provided domain
users with generic software for use with no further assistance from
software developers.

Scientists and engineers use information from reference books, textbooks,
and journals. Reference information is useful over long time periods,
while textbook information is more recent. Journal information relates to
the latest inventions or discoveries. With Natural Computing documents,
after reading about an interesting new scientific discovery in a journal, a
scientist can readily combine it with existing information in textbooks or
reference books, since this process of combining information is extremely
simple. The scientist can copy the Natural Computing feature (equation,
graph, table, procedure, or picture) and combine it with an existing
procedure. Presto! A new algorithm or procedure is instantly developed
for further use. The scientist can instantaneously communicate it to others
interested in the new procedure. This is what I mean by asserting that
Natural Computing allows for the creation and communication of new
knowledge.

Natural Computing focuses on developing generic calculation software
for use by domain specialists in science, engineering, and other fields that
depend on calculation. With the Natural Computing environment and
tools, domain specialists could work with tables, graphs, equations,
procedures, pictures, and text. Among the benefits of this approach are
economical and affordable generation of applications, high quality of
software and applications, high growth potential for applications, high
reuse of applications, ready availability of high-utihty information in
electronic media, and rapid transmission of domain information.

43

Acknowledgments

The following Companies have given permission to use their copyrighted
material and the author’s grateful to them:

l McGraw-Hill Book Co., New York, NY,

l The Washington Post, Washington, DC, and

l John Wiley and Sons, Inc., New York, NY.

References

Brooks, Frederick I’., Jr. (1987). “No Silver Bullet: Essence and Accident of
Software Engineering,” Conzputer, 20, No. 4 (April), 10-19.

Coad, Peter, and Edward Yourdon (1991). Object-Oriented Analysis, 2nd ed.,
Yourdon Press Computing Series, Prentice Hall, Englewood Cliff, NJ.

Date, C. J. (1995). An Infrodtlcfion to Database Systems, 6th ed., Addison-Wesley
Publishing Co., Reading, MA.

Karamchetty, Som D. (1997). “Natural Computing,” U.S. Patent Number
5,680,557 (October 21).

Karamchetty, Som D. (2000a). Nufurul Computing: Analysis of’lbblesfor Computer
Representation, U.S. Army Research Laboratory, ARL-TR-2041.

Karamchetty, Som D. (2000b). Nuftlrul Comptlfiq: Analysis of Graphsfor Conz-
pufer Representation, U.S. Army Research Laboratory, ARL-TR-2042.

Karassik, Igor J., William C. Krutzsch, Warren H. Fraser, and Joseph I? Messina,
eds. (1976). Pump Handbook, McGraw-Hill Book Co., New York, NY.

Keenan, Joseph H., Frederick G. Keyes, Philip G. Hill, and Joan G. Moore
(1969). Steam Tables: Tlmmod~ymnzic Properties of Wafer Including Vapor,
Liquid, and Solid Phnses, John Wiley and Sons, Inc., New York, NY.

Lemay, Laura (1996). Teuch Yowself Web Publishilzg zuifh HTML 3.0 in u Week, 2nd
ed., Sams.Net, Publishing, Indianapolis, IN.

Morris, Mary E. S. (1996). HTML for Ftm and Profit, Sunsoft Press.

Shaler, Sally, and Stephen J. Mellor (1988). Object Oriented Systems Anulysis-
Modeling the World ilz Data, Yourdon Press Computing Series, Prentice
Hall, Englewood Cliffs, NJ.

Shigley, Joseph E. (1977). Mechanical Engineering Design, 3rd ed., McGraw-Hill
Book Co., New York, NY.

Streeter, V. L. (1971). Fluid Mechmics, 5th ed., McGraw-Hill Book Company,
New York, NY.

U.S. Government Printing Office (GPO) (1984). U.S. Government Prinfirzg Oflz’ce
Style Manual (March).

Van Wylen, Gordon J., and Richard E. Sonntag (1965). Fundunrer~fuls of Classical
Thernrodymnzics, John Wiley and Sons, New York, NY.

Warfield, J. N. (1994). A Scieme of Gcmric Design: Munugiq Conzpkxify Throzrgh
System Design, 2nd ed., Iowa State University Press, Ames, IA.

Warfield, J. N., and A. R. Cardenas (1994). A Hundbook of Inferucfive Munugenzcnf,
2nd ed., Iowa State University Press, Ames, IA.

T1ze Wushifzgfo11 Posf (1996) Monday, May 27, p C6.

Wolfram, Stephen (1991). Mufhenznficu, A System for Doing Mafhenzufics by Conz-
pufer, 2nd ed., Addison-Wesley Publishing Co., Reading, MA.

45

Distribution

Admnstr
Defns Tech1 Info Ctr
Attn DTIC-OCP
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Oft of the Secy of Defns
Attn ODDRE (R&AT)
The Pentagon
Washington DC 20301-3080

Oft of the Secy of Defns
Attn OUSD(A&T)/ODDR&E(R) R J Trew
3080 Defense Pentagon
Washington DC 20301-7100

AMCOM MRDEC
Attn AMSMI-RD W C McCorkle
Redstone Arsenal AL 35898-5240

CECOM
Attn PM GPS COL S Young
FT Monmouth NJ 07703

Dir for MANPRINT
Oft of the Deputy Chief of Staff for Prsnnl
Attn J Hiller
The Pentagon Rm 2C733
Washington DC 20301-0300

TECOM
Attn AMSTE-CL
Aberdeen Proving Ground MD 21005-5057

US Army ARDEC
Attn AMSTA-AR’-TD M Fisette
Bldg 1
Picatinny Arsenal NJ 07806-5000

US Army Info Sys Engrg Cmnd
Attn ASQB-OTD F Jenia
FT Huachuca AZ 85613-5300

US Army Natick RDEC
Acting Tech1 Dir
Attn SSCNC-T P Brandler
Natick MA 01760-5002

US Army Simulation, Train, & Instrmntn
Cmnd

Attn J Stahl
12350 Research Parkway
Orlando FL 32826-3726

US Army Soldier & Biol Chem Cmnd
Dir of Rsrch & Techlgy Dirctrt
Attn SMCCR-RS I G Resnick
Aberdeen Proving Ground MD 21010-5423

US Army Tank-Automtv Cmnd Rsrch, Dev, &
Engrg Ctr

Attn AMSTA-TR J Chapin
Warren MI 48397-5000

US Army Train & Doctrine Cmnd
Battle Lab Integration & Tech1 Dirctrt
Attn ATCD-B J A Klevecz
FT Monroe VA 23651-5850

US Military Academy
Mathematical Sci Ctr of Excellence
Attn MDN-A LTC M D Phillips
Dept of Mathematical Sci Thayer Hall
West Point NY 10996-1786

Nav Surface Warfare CtrA
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 110
Dahlgren VA 22448-5100

1

DARPA
Attn S Welby
3701 N Fairfax Dr
Arlington VA 22203-1714

Palisades Inst for Rsrch Svc Inc
Attn E Carr
1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202-3402

NASA Langley Rsrch Ctr
Vehicle Techlgy Ctr
Attn AMSRL-VT W Elber
Hampton VA 23681-0001

47

Distribution (cont’d)

US Army Rsrch Lab
Attn AMSRL-WM I May
Aberdeen Proving Ground MD 21005-5000

US Army Rsrch Lab
Attn AMSRL-RO-D C Chang
Attn AMSRL-RO-EN W Bach
PO Box 12211
Research Triangle Park NC 27709

US Army Rsrch Lab
Attn AMSRL-CI N Radhakrishnan
Aberdeen Proving Ground MD 21005-5067

US Army Rsrch Lab
Attn AMSRL-HR R L Keesee
Aberdeen Proving Ground MD 21005-5425

US Army Rsrch Lab
Attn AMSRL-VP R Bill
21000 Brookpark Rd
Cleveland OH 44135-3191

US Army Rsrch Lab
Attn AMSRL-SL J Wade
White Sands Missile Range NM 88002

48

US Army Rsrch Lab
Attn AMSRL-DD J Miller
Attn AMSRL-CI-AI-A Mail & Records Mgmt
Attn AMSRL-CI-AP Tech1 Pub (3 copies)
Attn AMSRL-CI-LL Tech1 Lib (3 copies)
Attn AMSRL-IS J D Gantt
Attn AMSRL-IS-CB L Tokarcik
Attn AMSRL-IS-CD P Jones
Attn AMSRL-IS-C1 B Broome
Attn AMSRL-IS-CS G Racine
Attn AMSRL-IS-D COL M R Kind1
Attn AMSRL-IS-D P Emmerman
Attn AMSRL-IS-D R Slife
Attn AMSRL-IS-E D Brown
Attn AMSRL-IS-TA J Gowens
Attn AMSRL-SE J Pellegrino
Attn AMSRL-SE-EP S Karamchetty

(30 copies)
Attn AMSRL-ST C I Chang
Adelphi MD 20783-1197

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collecbon of information is estimated to average 1 hour per response. includmg the time for reviewing instructions. searching existing data SOUICBS.
gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comments regarding this burden estimate Or any other aspect Of this
collection of informabon, including suggestions for reducing this burden. lo Washington Headquarters Services, Directorate for InfOrmatiOn Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204, Arllngton. VA 22202.4302. and lo the Offe of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 2000 Final, 1995-1997

I. TITLE AND SUBTITLE Natural Computing: Its Impact on Software 5. FUNDING NUMBERS

Development
DA PR: N/A

PE: N/A

i. AUTHOR(S) Som Karamchetty

‘. PERFORMING ORGANIZATION NAME(S) AND ADDRESS 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory REPORT NUMBER

Attn: AMSRL-IS-C email: skaramch@arl.mil ARL-TR-2040

2800 Powder Mill Road
Adelphi, MD 20783-1197

I. SPONSORINWMONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSORING/MONITORING

U.S. Army Research Laboratory AGENCY REPORT NUMBER

2800 Powder Mill Road
Adelphi, MD 20783-l 197

!l. SUPPLEMENTARY NOTES

ARL PR: N/A
AMS code: N/A

l2a. DlSTRlBUTlONlAVAlLABlLlTY STATEMENT Approved for public release; 12b. DISTRIBUTION CODE

distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Many software engineering problems stem, in part, from the need for software designers to understand
specialized knowledge domains. Current computer software systems are not capable of representing
familiar calculation features such as equations, tables, graphs, procedures, and pictures so that these
features assist humans to perform calculations in a natural, intuitive way. This report explains the need for
these features to present users with “natural” ways of doing calculations-that is, ways analogous to the
paper-based techniques used in the absence of computers. Features presented in this way would make
computing more transparent and intuitive. In the Akzfzwnl Computing approach proposed in this report,
software tools are first developed and then given to domain specialists to use in their calculation methods,
knowledge, and data. As domain knowledge changes and grows, and/or new calculation methods are
needed, software developers can add new methods and procedures to the existing methods (or delete old
ones) and develop successively enhanced versions of application software for use by both specialists and
naive end users. Domain information and knowledge can be captured in electronic books and
communicated electronically for further expeditious use. Natural Computing eases application system
development and accelerates domain knowledge dissemination, leading to quicker development of further
knowledge.

14. SUBJECT TERMS

Software engineering, tables, graphs, evaluations, object-oriented
15. NUMBER OF PAGES

55
programming 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT

19. SECURITY CLASSIFICATION
OF THIS PAGE

20. LIMITATION OF ABSTRACT
OF ABSTRACT

Unclassified Unclassified Unclassified UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 7.39-18
298.lo2

